
ABSTRACT: The Fourier transform infrared (FTIR) technique
in combination with multivariate data evaluation was used to
analyze a wide variety of cocoa butters (CB), cocoa butter
equivalents (CBE), and mixtures thereof. The sample set con-
sisted of 14 CB (10 pure from various geographical origins and
4 commercial mixtures), 18 CBE (12 mixtures and 6 pure CBE
from kokum, illipé, and palm midfraction), and 154 mixtures of
CB with CBE at various concentrations (ranging from 5 to 20%).
A total of 192 samples were analyzed in triplicate. All CB and
CBE were shown to have very characteristic FTIR spectra that
gave highly reproducible fingerprints. The main vibrational
modes were also elucidated. FTIR can easily be employed to
distinguish between pure CB and pure CBE. With prior knowl-
edge of which cocoa butter is present in mixtures, FTIR can be
applied to distinguish between CB mixed with CBE at the 10
and 20% levels (corresponding to about 2 and 5% of CBE in
chocolate). However, the study revealed that a single “global”
statistical model (multilayer perceptron, radial basis functions,
or partial least square regression) was not able to predict the
precise level of addition. The FTIR approach detailed here
shows great potential as a rapid screening method for distin-
guishing between pure vegetable fats and, we believe, could be
extended to investigate mixtures of CB and CBE by the estab-
lishment of a database.

Paper no. J9857 in JAOCS 78, 993–1000 (October 2001).

KEY WORDS: Chemometrics, chocolate, cocoa butter (CB),
cocoa butter equivalents (CBE), Fourier transform infrared (FTIR)
spectroscopy.

According to the new European Chocolate Directive 2000/36/
EEC (1), the addition of up to 5% of vegetable fats other than
cocoa butter (CB), the so-called cocoa butter equivalents
(CBE), is allowed in chocolate products. Permitted fats are
palm oil, illipé (borneo tallow or tengkawang), sal, shea,
kokum gurgi, and mango kernel. The composition of cocoa
butter and alternative fats, as well the analytical approaches
for identification and determination, has been reviewed re-
cently (2,3). CBE resemble the chemical composition and
physical properties of CB very closely and are easily mixable
with CB. The major triglycerides are the same as in CB, mak-
ing the detection and quantification of such an addition diffi-
cult. The uncertainty for predicting the CBE level in choco-

late is mainly caused by the large variety of CB and CBE de-
riving from different geographical origins the world over. In
addition, the detection and quantification of some CBE in CB
mixtures is extremely difficult, e.g., that of illipé (4,5). 

Recently, the performance of four chromatographic meth-
ods in combination with mulivariate statistical data analysis
for the major components of fat in chocolate, i.e., triglyc-
erides and fatty acids, was reported (6). This extensive study
on a large variety of CB and CBE revealed that the most suit-
able method for quantification should be based on the analy-
sis of the major components, the triglycerides (4). Minor
components (e.g., tocopherols, -trienols, and sterene data)
have been found to be of limited use for quantitative pur-
poses; however, they could be additional indicators for the
presence of other vegetable fats in chocolate (7,8).

Nevertheless, a perceived need still exists within official
control laboratories for the availability of rapid screening
methods for the quantification of such vegetable fats in
chocolate in order to implement the new directive and to han-
dle a large throughput of samples (9).

Fourier transform infrared spectroscopy (FTIR) is a rapid
analytical technique that measures the vibrations of bonds
within functional groups. With FTIR, a particular bond absorbs
electromagnetic (EM) radiation at a specific wavelength; there-
fore, by interrogating a biological sample with EM radiation of
many wavelengths in the mid-IR range (here defined as 4000
to 600 cm−1), one can construct an infrared “fingerprint” of the
original food sample under investigation (10,11). Because dif-
ferent bonds absorb or scatter different wavelengths of EM ra-
diation, these biological infrared fingerprints are made up of
the vibrational features of all biochemical components. There-
fore, FTIR gives quantitative information about the total bio-
chemical composition of a food sample without destroying it,
and produces fingerprints that are reproducible and distinct for
different biological materials (12–14).

In this study we describe the potential of FTIR to distinguish
between CB and CBE and to detect CBE in mixtures with CB.

EXPERIMENTAL PROCEDURES

Samples and chemicals. CB and CBE were donated by com-
mercial suppliers. Samples consisted of 14 CB (10 pure from
various geographical origins and 4 commercial mixtures), 18
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CBE [12 mixtures and 6 pure CBE (kokum, illipé, and palm
midfraction)] and 154 mixtures of CB with CBE at various
concentrations (ranging from 5 to 20%). 

In order to obey the Beer-Lambert law and limit overab-
sorbing bands (14), the vegetable fat samples were diluted
1:10 with analytical-grade acetone. All samples were ana-
lyzed in triplicate (in Run 1, 159 total, and in Run 2, 417
total). Therefore in total, excluding experimental optimiza-
tion, 576 spectra were collected.

Diffuse reflectance-absorbance FTIR. Five microliters of
the above fat samples were evenly applied onto an aluminum
plate (this measured 10 × 10 cm and had 100 wells cut into the
surface). Prior to analysis, the samples were oven-dried at 50°C
for 30 min to evaporate the acetone. Samples were run in trip-
licate. The FTIR instrument used was the Bruker IFS28 FTIR
spectrometer (Bruker Spectrospin Ltd., Coventry, United King-
dom) equipped with a mercury-cadmium-telluride (MCT) de-
tector cooled with liquid N2. The aluminum plate was then
loaded onto the motorized stage of a reflectance thin-layer
chromatography (TLC) accessory (15,16). The IBM-compati-
ble personal computer used to control the IFS28 was also pro-
grammed (using OPUS version 2.1 software running under
IBM O/S2 Warp provided by the manufacturers) to collect
spectra over the wave number range 4000 to 600 cm−1. The IR
beam was focused into the sample, and data were collected au-
tomatically (because we knew the x,y location of the wells).

Spectra were acquired at a rate of 20 s−1. The spectral reso-
lution used was 4 cm−1. To improve the signal-to-noise ratio,
256 spectra were co-added and averaged. Each sample was thus
represented by a spectrum containing 882 points, and spectra
were displayed in terms of absorbance as calculated from the
reflectance-absorbance spectra using the OPUS software [which
is based on the Kubelka-Munk theory (13)] (Fig. 1). These con-
ditions were used for all experiments. To minimize problems
arising from baseline shifts, the following procedure was imple-
mented: (i) the spectra were first normalized so that the smallest
absorbance was set to 0 and the highest to +1 for each spectrum;
(ii) next, these normalized spectra were detrended by subtract-
ing a linearly increasing baseline from 4000 to 600 cm−1; 
(iii) finally, the smoothed first derivatives of these normalized
and detrended spectra were calculated using the Savitzky-Golay
algorithm (17) with five-point smoothing.

Cluster analysis. The initial stage involved the reduction of
the multidimensional FTIR data by principal components analy-
sis (PCA) (18). PCA is a well-known technique for reducing the
dimensionality of multivariate data while preserving most of the
variance, and Matlab was employed to perform PCA according
to the NIPALS algorithm (19). Discriminant function analysis
[PC-DFA, also known as canonical variates analysis (CVA)]
then discriminated between groups on the basis of the retained
principal components (PC) and the a priori knowledge of which
spectra were replicates; thus, this process does not bias the
analysis in any way (20). Finally, the Euclidean distance be-
tween a priori group centers in discriminant function (DF)
space was used to construct a similarity measure, with the
Gower general similarity coefficient SG (21), and these distance

measures were then processed by an agglomerative clustering
algorithm to construct a dendrogram (20). These methods were
implemented using Matlab version 5.0.0.4069 (The Math
Works, Inc., Natick, MA), which runs under Microsoft Win-
dows NT on an IBM-compatible personal computer.

Supervised learning methods. When the desired responses
(targets) associated with each of the inputs (spectra) are
known, then the system may be supervised. The goal of su-
pervised learning is to find a model that will correctly associ-
ate the inputs with the targets; this is usually achieved by min-
imizing the error between the target and the model’s response
(output) (22). In this case we wanted to attempt to predict
whether any CB was adulterated at the 10 or 20% level. Thus,
a global single model was constructed.

The input data sets for all supervised learning methods con-
tained the full FTIR spectra (882 wave number absorbances).
Because we were interested only in adulteration at the 10 or
20% level, only these 369 spectra were used in the analysis,
and these were partitioned into training and test sets.

It is important that the training data encompass the full
range under study, because even though supervised methods
are excellent at being able to interpolate, they are likely to give
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FIG. 1. Fourier transform infrared (FTIR) spectra of cocoa butter (CB) A1
(Malaysia) and of a mixture (20%) with cocoa butter equivalent (CBE)
V4 (CBE mixture based on palm mid fraction with other fats in a ratio of
85:15).



poor estimates outside their “realm of knowledge,” i.e., they
cannot extrapolate sufficiently well (23). In order to achieve
this range, the spectral data from FTIR were partitioned using
the in-house program Multiplex (24), developed by Alun
Jones. The Multiplex algorithm systematically placed samples
into the training and test sets so that the problem domain (in
terms of actual spectra) was adequately represented. This step
is very important if we are attempting to achieve a global
model in order to predict the level of adulteration blindly. The
data were thus partitioned evenly into training and test sets;
the training set comprised 186 spectra (62 in replicate), and
the test set 183 spectra (61 in replicate). The output data were
encoded in a single output node such that 10% adulteration
was coded as 10 and 20% adulteration as 20.

Two artificial neural network (ANN)-based methods, viz.,
standard back-propagation multilayer perceptrons (MLP)
(25,26) and radial basis functions (RBF) (27,28) were used.
Both ANN were carried out with a user-friendly neural net-
work simulation program, NeuFrame version 3,0,0,0 (Neural
Computer Sciences, Lulworth Business Centre, Totton,
Southampton, United Kingdom), which runs under Microsoft
Windows NT on an IBM-compatible personal computer (29).

The multivariate linear regression method of partial least
squares (PLS) (30) was also exploited. All PLS analyses were
carried out using an in-house program developed by Alun Jones
(31) following the pseudocode given in Reference 30, which
runs under Microsoft Windows NT on an IBM-compatible PC.

RESULTS AND DISCUSSION

The FTIR technique was used to analyze a wide variety of CB,
CBE, and mixtures thereof. In total, 192 samples were ana-
lyzed in triplicate. The samples were coded in order to have
no information about the composition before the analysis and
statistical data evaluation were performed. The same sample
sets had been used for other investigations of suitable analyti-
cal methods for the detection and determination of CBE in
mixtures with CB (4,32).

Initial FTIR experiments were conducted to ascertain the
optimal way to collect spectra. Several of the melted fats were
applied directly to the sample carrier, but poor spectra were
obtained; for example, the baseline was ~0.4 absorbance (ar-
bitrary) units, and the highest peaks had an absorbance vastly
in excess of 2.0. The conclusion was that too much sample
had been applied. Therefore, to obey the Beer-Lambert law
and thus limit highly absorbing bands (14), all samples were
diluted 10-fold in analytical-grade acetone. These spectra typ-
ically ranged from 0 to 1.2 absorbance units (see Fig. 1). Fi-
nally, to minimize problems arising from unavoidable base-
line shifts, the mathematical processing regime detailed
above, and used previously (15), was adopted.

All CB and CBE had very characteristic FTIR spectra. Be-
cause it is often important to appreciate what is being measured
in chemical terms, rather than to use FTIR purely as a blind fin-
gerprinting tool, some studies were carried out using IR Mentor
Pro, version 2 (Bio-Rad Laboratories, Richmond, CA), which

allowed some of the major vibrational modes to be assigned.
From this we could observe very strong C–H (and C=H) stretch-
ing at approximately 725, 1450, and in the region of 2800 to
3000 cm−1, while the O–C=O ester bond vibration found in
triglycerides was clearly evident at 1150 and 1750 cm−1 (Fig. 1).

In the first analytical run, 8 pure CB, 14 CBE (pure and
commercial mixtures), and 32 CB/CBE mixtures (each CB
was adulterated at 5, 10, 15, and 20% levels with the same
CBE) were analyzed (Table 1). The adulteration range from 5
to 20% CBE at the fat level corresponds to about 1 to 5%
CBE in final chocolate. These values, being below the per-
mitted level of 5%, were prepared for analysis in order to
demonstrate the analytical capability of the method.

A range of cluster analyses were undertaken on these sam-
ples, as detailed above; predominantly PC-discriminant func-
tion analysis (DFA) was employed, where the input to the
DFA algorithm was the first 20 PC (which explained >99%
of the total variance). The resulting PC-DFA plot (Fig. 2)
shows that with the exception of V17, it was very easy to sep-
arate the pure CB from the pure CBE and pure vegetable fats.

In the PC-DFA cluster plots of five samples of only one
pure CB (CB A1 from Malaysia, Tawau Crop 1992) adulter-
ated with a CBE (CBE V4, a commercial mixture containing
palm mid fraction and other exotic raw materials in a ratio of
about 85:15) at levels of 0, 5, 10, 15, and 20%, a trend was
observed according to the level of adulteration (Fig. 3) in the
first DF. Because DF 1 was extracted to give the most vari-
ance, this trend clearly highlights that the information from
the adulterant fat was present in the infrared spectra. The next
stage was to ascertain if it would be possible to detect this pat-
tern in a large variety of CB adulterated with many different
CBE and with vegetable fats.

This stage was carried out with a second series of samples
(Table 2) that were more extensive than the samples from the
first run. Seven CB and nine CBE, both pure and commercial
mixtures, were analyzed by FTIR. The aim of this work was
to attempt to distinguish between 10 and 20% addition, corre-
sponding to about 2 to 5% of CBE in chocolate, respectively.

As observed in the first run, it was very easy to distinguish
the pure CB from the pure CBE. With one exception (CB K1),
the dendrogram from these analyses (Fig. 4) showed that the
CB grouped together and were clearly separated from the CBE.
CB were observed to cluster into three groups: (i) BD (com-
mercial mixture, deodorized) and BN (a commercial mixture
identical to BD, nondeodorized) were highly similar; (ii) Z6 (a
commercial mixture, deodorized) and Z7 (a commercial mix-
ture identical to Z6, nondeodorized) cluster very closely and
were also similar to K2 (pure CB from West Africa) and K3
(pure CB from Brazil); and (iii) K1 (pure CB from Malaysia)
was different from the other CB. Because the nondeodorized
and deodorized CB clustered together, these findings strongly
suggest that the results obtained by infrared spectroscopy are
based on the triglyceride structure rather than on minor com-
ponents that are removed by the deodorization process.

For the CBE, four groups were seen: (i) V2 (a commercial
CBE mixture based on palm midfraction and exotic raw ma-
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terials in a ratio of about 70:30) and V5 (a commercial mix-
ture, no information available) were similar; (ii) contained
V13 (pure CBE, illipé from producer A) and V21 (pure CBE,
illipé from producer B were similar); (iii) V18 (a commercial
mixture, based on shea) and V20 (a commercial mixture,
based on sal) were very similar and clustered more loosely
with V15 (a commercial mixture, no information available)
and V19 (a commercial mixture, illipé type); and (iv) V22
(kokum) was very different from all the fats analyzed. This
pattern was also observed in the DFA plot from analysis of
all 139 samples (data not shown). 

The next stage was to analyze each of the seven CB, both

pure and adulterated, with the pure adulterants. Using CB BD
as an example, the PC-DFA plots (Figs. 5A,B) showed that
all the pure adulterants were very different from the pure BD
and BD adulterated at 10 and 20% levels. Further analysis of
BD alone and with 10 and 20% adulteration (Figs. 5C,D)
showed that while each of the adulterants at the 10 and 20%
levels could be separated from one another and from the pure
BD, there was no distinction into two classes (one for the 10%
and one for the 20% level) for all the CBE. This result is to

996 R. GOODACRE AND E. ANKLAM

JAOCS, Vol. 78, no. 10 (2001)

TABLE 1
Samples of First Run of Analysis

Sample codea % CBE in CBb Kind of sample

A1 0 CB, Malaysia, Crop 1992
5A1V4 5
10A1V4 10
15A1V4 15
20A1V4 20

A5 0 CB, Nigeria, Crop 1993
5A5V6 5
10A5V6 10
15A5V6 15
20A5V6 20

B3 0 CB mixture, deodorized
5B3V2 5
10B3V2 10
15B3V2 15
20B3V2 20

B11 0 CB mixture, deodorized
5B11V12 5
10B11V12 10
15B11V12 15
20B11V12 20

G1 0 CB, West Africa, Ivory Coast
5G1V1 5
10G1V1 10
15G1V1 15
20G1V1 20

K1 0 CB, Malaysia
5K1V1 5
10K1V1 10
15K1V1 15
20K1V1 20

Z5 0 CB, Ghana, Crop 1994
5Z5V15 5
10Z5V15 10
15Z5V15 15
20Z5V15 20

Z4 0 CB, Ecuador, Crop 1994
5Z4V13 5
15Z4V13 15
20Z4V13 20
aV1, CBE mixture, based on palm mid fraction; V2, CBE mixture, based on
palm mid fraction; V4, CBE mixture, no information available; V6, CBE mix-
ture, no information available; V12, palm mid fraction; V15, CBE mixture,
no information available.
bCBE, cocoa butter equivalent; CB, cocoa butter.

FIG. 2. Discriminant analysis (principal components-discriminant func-
tion analysis, PC-DFA) on pure CB and pure CBE. Abbreviations: A1,
CB (Malaysia, Crop 1992); A5, CB (Nigeria, Crop 1995); B11, CB mix-
ture, deodorized; B3, CB mixture, deodorized; G1, CB (West Africa,
Ivory Coast); K1, CB (Malaysia); V1, CBE mixture, based on palm mid
fraction; V2, CBE mixture, based on palm mid fraction; V5, CBE mix-
ture, no information available; V6, CBE mixture, no information avail-
able; V7, CBE mixture, no information available; V8, illipé; V9, illipé;
V10, palm mid fraction; V12, palm mid fraction; V13, illipé; V15, CBE
mixture, no information available; V17, CBE mixture, no information
available; Z4, CB (Ecuador, Crop 1994); Z5, CB (Ghana, Crop 1994).
See Figure 1 for other abbreviations.

FIG. 3. Discriminant analysis plots of five samples of CB A1 (Malaysia)
mixed with CBE V4 (a commercial mixture based on palm mid fraction
with other fats in a ratio of 85:15) at levels of 5, 10, 15, and 20%. See
Figure 1 for abbreviations.



be expected, because the CBE are chemically different and
the addition of them to a single CB will cause different spec-
tral changes. To attempt to force the separation into two
groups, DFA was performed again, but this time the group
structure (a priori information) was based on whether the but-
ters were adulterated at either 10 or 20%. This DFA plot

showed that although there was some overlap, two groups
could be seen; moreover, the 20% adulterants had more
spread than the 10% samples. This result is to be expected
given their increased chemical differences. Finally, to test
whether DFA could be used to predict whether CB were adul-
terated at either the 10 or the 20% level, the first 30 spectra
were used to form PC-DFA, and then the remaining 24 spec-
tra were projected into these spaces. However, this approach
proved to be unsuccessful. It is possible that the spectra used
to calibrate the DFA were different from those used to test the
separation, so the projection was extrapolating. All these
analyses were conducted for the other six CB, and similar re-
sults were observed (data not shown).

The next stage was to analyze each of the nine CBE sepa-
rately, mixed with all the cocoa butters at 10 and 20% levels.
Using CBE V21 (illipé) as an example, DFA plots (data not
shown) demonstrated that most of the different CB were re-
covered together, but again that those at the 10 and 20% lev-
els could be separated. Further DFA analysis encoding group
structure according to adulterant level (Fig. 6) indicated that,
although there was some overlap, two groups could be seen,
one for the 10% and one for the 20% in the first DF. Projec-
tion analyses were again conducted, and these were also un-
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TABLE 2
Samples of Second Run of Analysis

CBa CBEb % CB CBE % CB CBE %

BD 0 K1 V22 10 K3 V15 20
BD V18 10 K1 V22 20 Z6 0
BD V18 20 K1 V2 10 Z6 V18 10
BD V19 10 K1 V2 20 Z6 V18 20
BD V19 20 K1 V5 10 Z6 V19 10
BD V20 10 K1 V5 20 Z6 V19 20
BD V20 20 K1 V13 10 Z6 V20 10
BD V21 10 K1 V13 20 Z6 V20 20
BD V21 20 K1 V15 10 Z6 V21 10
BD V22 10 K1 V15 20 Z6 V21 20
BD V22 20 K2 0 Z6 V22 10
BD V2 10 K2 V18 10 Z6 V22 20
BD V2 20 K2 V18 20 Z6 V2 10
BD V5 10 K2 V19 10 Z6 V2 20
BD V5 20 K2 V19 20 Z6 V5 10
BD V13 10 K2 V20 10 Z6 V5 20
BD V13 20 K2 V20 20 Z6 V13 10
BD V15 10 K2 V21 10 Z6 V13 20
BD V15 20 K2 V21 20 Z6 V15 10
BN 0 K2 V22 10 Z6 V15 20
BN V18 10 K2 V22 20 Z7 V13 10
BN V18 20 K2 V2 10 Z7 V13 20
BN V19 10 K2 V2 20 Z7 V18 10
BN V19 20 K2 V5 10 Z7 V18 20
BN V20 10 K2 V5 20 Z7 V19 10
BN V20 20 K2 V13 10 Z7 V19 20
BN V21 10 K2 V13 200 Z7 V20 10
BN V21 20 K2 V15 10 Z7 V20 2
BN V22 10 K2 V15 20 Z7 V21 10
BN V22 20 K3 0 Z7 V21 20
BN V2 10 K3 V18 10 Z7 V22 10
BN V2 20 K3 V18 20 Z7 V22 20
BN V5 10 K3 V19 10 Z7 V2 10
BN V5 20 K3 V19 20 Z7 V2 20
BN V13 10 K3 V20 10 Z7 V5 10
BN V13 20 K3 V20 20 Z7 V5 20
BN V15 10 K3 V21 10 Z7 V13 10
BN V15 20 K3 V21 20 V18 100
K1 0 K3 V22 10 V19 100
K1 V18 10 K3 V22 20 V20 100
K1 V18 20 K3 V2 10 V21 100
K1 V19 10 K3 V2 20 V22 100
K1 V19 20 K3 V5 10 V2 100
K1 V20 10 K3 V5 20 V5 100
K1 V20 20 K3 V13 10 V13 100
K1 V21 10 K3 V13 20 V15 100
K1 V21 20 K3 V15 10
aCB: BD, mixture deodorized; BN, mixture nondeodorized; K1, Malaysia;
K2, West Africa; K3, pure CB, Brazil; Z6, commercial deodorized mixture;
Z7, commercial mixture identical to Z6 but not deodorized.
bCBE: V2, mixture of palm mid fraction with other fat in ratio 70:30; V5, mix-
ture with composition unknown; V13, illipé; V15, mixture with composition
unknown; V18, CBE mixture based on shea; V19, CBE mixture based on il-
lipé; V20, CBE mixture based on sal; V21, CBE illipé; V22, CBE kokum. See
Table 1 for other abbreviations.

FIG. 4. Dendrogram of various pure CB and CBE. Abbreviations: V18,
CBE mixture based on shea; V19, CBE mixture based on illipé; V20,
CBE based on sal; V21, CBE illipé; V22, CBE kokum; Z6, CB commer-
cial deodorized mixture; Z7, CB commercial mixture identical to Z6
but not deodorized; K2, cocoa butter (West Africa); K3, cocoa butter
(Brazil); BN, cocoa butter mixture, nondeodorized; BD, cocoa butter
mixture, deodorized. For other abbreviations, see Figures 1 and 2.



successful because of the potential extrapolation of the test
set on the calibration (training) set.

The final stage was to use the supervised learning methods
of PLS regression, multilayer perceptrons (MLP or ANN), and
RBF to predict whether any CB was mixed with a CBE at t
he 10 or 20% level. Note that because the DFA plots showed
the great chemical difference between the different adulterants
and the different cocoa butters, it is paramount that the training
set should fully encompass the problem domain, especially
when attempting to achieve a global model to predict the 
level of adulteration in all fat samples. Therefore, only these
369 spectra were used in these analyses, and these were split
into representative training and test sets by the program Multi-
plex (as detailed above) such that the training set comprised
186 spectra (62 in replicate) and the test set 183 spectra (61 
in replicate).

The PLS, MLP, and RBF models were calibrated follow-
ing our usual good modeling practice (23), using test set
cross-validation. However, while these supervised methods
could easily differentiate those CB adulterated with 10% CBE
from those adulterated with 20% CBE in the training set, they
were unsuccessful at classifying the test set. This result indi-
cates that the problem is too complex for one all-encompass-

ing calibration system to model, whether it be linear regres-
sion (PLS) or effect nonlinear ANN mappings between the
infrared spectra and the adulterated level (MLP or RBF).

We have shown that FTIR gave highly reproducible charac-
teristic fingerprints from the butter samples and that the main
vibrational modes were identified as belonging to C–H and C=H
stretches or O–C=O vibrations from triglycerides. Cluster
analyses showed that FTIR could very easily distinguish
between the pure CB and the pure CBE. Moreover, with prior
knowledge of which CB was being analyzed, FTIR was also
able to distinguish between CB mixed with CBE at the 10 and
20% levels (corresponding to about 2 and 5% in chocolate).

Due to the chemical complexity of all seven different CB
and nine different CBE, it was not possible to construct a sin-
gle MLP, RBF, or PLS model that could be used to predict the
global level of addition. Thus, future studies should concen-
trate on designing a hierarchical approach that would first type
the CB prior to deciding at what level it was mixed with a CBE.

In conclusion, the FTIR approach detailed here shows
great potential as a rapid screening method for distinguishing
between pure vegetable fats and, we believe, could be ex-
tended to investigate mixtures of CB and CBE by the estab-
lishment of a data base.
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FIG. 5. Discriminant function analysis plot (A and B) of pure (100) deodorized cocoa butter (BD) samples and BD adulterated at 10 and 20% lev-
els, and plot (C and D) of BD adulterated at 10 and 20% levels. See Figures 2 and 4 for abbreviations.
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